RNAi screening identifies the armadillo repeat-containing kinesins responsible for microtubule-dependent nuclear positioning in Physcomitrella patens.

نویسندگان

  • Tomohiro Miki
  • Momoko Nishina
  • Gohta Goshima
چکیده

Proper positioning of the nucleus is critical for the functioning of various cells. Actin and myosin have been shown to be crucial for the localization of the nucleus in plant cells, whereas microtubule (MT)-based mechanisms are commonly utilized in animal and fungal cells. In this study, we combined live cell microscopy with RNA interference (RNAi) screening or drug treatment and showed that MTs and a plant-specific motor protein, armadillo repeat-containing kinesin (kinesin-ARK), are required for nuclear positioning in the moss Physcomitrella patens. In tip-growing protonemal apical cells, the nucleus was translocated to the center of the cell after cell division in an MT-dependent manner. When kinesin-ARKs were knocked down using RNAi, the initial movement of the nucleus towards the center took place normally; however, before reaching the center, the nucleus was moved back to the basal edge of the cell. In intact (control) cells, MT bundles that are associated with kinesin-ARKs were frequently observed around the moving nucleus. In contrast, such MT bundles were not identified after kinesin-ARK down-regulation. An in vitro MT gliding assay showed that kinesin-ARK is a plus-end-directed motor protein. These results indicate that MTs and the MT-based motor drive nuclear migration in the moss cells, thus showing a conservation of the mechanism underlying nuclear localization among plant, animal and fungal cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NACK kinesin is required for metaphase chromosome alignment and cytokinesis in the moss Physcomitrella patens.

The NACK kinesins (NACK1, NACK2 in tobacco and AtNACK1/HINKEL, AtNACK2/STUD/TETRASPORE in Arabidopsis), members of a plant-specific kinesin-7 family, are required for cytokinesis. Previous studies using tobacco and Arabidopsis cells showed that NACK1 and AtNACK1 at the phragmoplast midzone activate the MAP kinase cascade during the late M phase, which is critical for the cell plate formation. H...

متن کامل

Kinesins are indispensable for interdigitation of phragmoplast microtubules in the moss Physcomitrella patens.

Microtubules form arrays with parallel and antiparallel bundles and function in various cellular processes, including subcellular transport and cell division. The antiparallel bundles in phragmoplasts, plant-unique microtubule arrays, are mostly unexplored and potentially offer new cellular insights. Here, we report that the Physcomitrella patens kinesins KINID1a and KINID1b (for kinesin for in...

متن کامل

An inducible RNA interference system in Physcomitrella patens reveals a dominant role of augmin in phragmoplast microtubule generation.

Mitosis is a fundamental process of eukaryotic cell proliferation. However, the molecular mechanisms underlying mitosis remain poorly understood in plants partly because of the lack of an appropriate model cell system in which loss-of-function analyses can be easily combined with high-resolution microscopy. Here, we developed an inducible RNA interference (RNAi) system and three-dimensional tim...

متن کامل

RNA interference in the moss Physcomitrella patens.

The moss Physcomitrella patens performs efficient homologous recombination, which allows for the study of individual gene function by generating gene disruptions. Yet, if the gene of study is essential, gene disruptions cannot be isolated in the predominantly haploid P. patens. Additionally, disruption of a gene does not always generate observable phenotypes due to redundant functions from rela...

متن کامل

Breakthrough Technologies RNA Interference in the Moss Physcomitrella patens

The moss Physcomitrella patens performs efficient homologous recombination, which allows for the study of individual gene function by generating gene disruptions. Yet, if the gene of study is essential, gene disruptions cannot be isolated in the predominantly haploid P. patens. Additionally, disruption of a gene does not always generate observable phenotypes due to redundant functions from rela...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant & cell physiology

دوره 56 4  شماره 

صفحات  -

تاریخ انتشار 2015